
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015 pp. 41-46
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Buffer Overflow Exploit Prevention
Kushal Ahuja1 and Vinod Kumar2

1,2Department of Computer Science Delhi Technological University New Delhi, India
E-mail: 1kushalahuja@gmail.com, 2vinodkumar@dce.edu

Abstract—Buffer overflow continues to be one of the leading
vulnerabilities that plague the software industry. Buffer overflow as
the name suggests results because software may potentially allow
operation, such as reading or writing, to be performed at addresses
not intended by the developer. Buffer overflow typically affects unsafe
languages such as C and C++ as these languages don’t perform
bound checks on arrays and pointer references and they focus more
on programming efficiency and code length than on the security
aspects. Languages like Java that perform bound check are not prone
to buffer overflows arising out of unbounded copy. Range of possible
buffer overflow exploits is based on degree of control by attacker
achieved. It may range from “Denial of Service” attack (resulting in
system crash) to “Arbitrary Code Execution” (to hijack control of
your system).
In this report, we typically explore the kinds of programming
vulnerabilities which result into Buffer Overflow, how an attacker
could exploit them, how a best programmer could detect them and
inhibit or prevent exploitation of those vulnerabilities. This report
details one method which is based on “Execution Space Protection”
to prevent buffer overflow vulnerability from being exploited. To
understand this method, report is complemented with basic Process
Memory Layout Details, Linux Internals like system calls, system call
table, Interrupt Descriptor table (IDT), Virtual memory area, and
Basic Kernel Module Programming. With all this knowledge
simulated, we’ll go through design details of a Kernel Module to
protect buffer overflow vulnerability from being exploited. This
kernel module works by overwriting the system call table function
pointers with its own function. Doing so would direct the control to
the module function whenever a system call is made and we can do
the necessary processing to know whether system call originated
from writable region of memory. If so, we can kill the system call
without letting it hijack control of our system.

1. INTRODUCTION

Buffer Overflow – The software may potentially allow
operations, such as reading and writing at addresses not
intended by the developer.

 Common Weakness Enumeration (http://cwe.mitre.org)

In computer security and programming, a buffer overflow, or
buffer overrun, is an anomalous condition where a process
attempts to store data beyond the boundaries of a fixed-length
buffer. The result is that the extra data overwrites adjacent
memory locations. The overwritten data may include other
buffers, variables and program flow data, and may result in
erratic program behavior, a memory access exception,

program termination (a crash), incorrect results or ―
especially if deliberately caused by a malicious user ― a
possible breach of system security. A buffer overflow occurs
when data written to a buffer, due to insufficient bounds
checking, corrupts data values in memory addresses adjacent
to the allocated buffer. Most commonly this occurs when
copying strings of characters from one buffer to another.

Example:

Suppose, a program has defined two variables items which are
adjacent in memory: an 8-byte-long string buffer, A, and a 2-
byte integer, B. Initially, A contains nothing but zero bytes,
and B contains the number length of buffer A i.e. 8.

Now, the program attempts to store the character string
"excessive" in the A buffer, followed by a zero byte to mark
the end of the string. By not checking the length of the string,
it overwrites the value of B:

In nearly all computer languages, both old and new, trying to
overflow a buffer is normally detected and prevented
automatically by the language itself (say, by raising an
exception or adding more space to the buffer as needed). But
there are two languages where this is not true: C and C++.
Often C and C++ will simply let additional data be scribbled
all over the rest of the memory, and this can be exploited to
horrific effect. What's worse, it's actually more difficult to
write correct code in C and C++ to always deal with buffer
overflows; it's very easy to accidentally permit a buffer
overflow. These might be irrelevant facts except that C and
C++ are very widely used; for example, 86% of the lines of
code in Red Hat Linux 7.1 are in either C or C++. Thus,
there's a vast amount of code that's vulnerable to this problem
because the implementation language fails to protect against it.

Kushal Ahuja and Vinod Kumar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

42

This isn't easily fixed in the C and C++ languages themselves.
The problem is based on fundamental design decisions of the
C language (particularly how pointers and arrays are handled
in C). Since C++ is a mostly compatible superset of C, it has
the same problems. Fundamentally, any time your program
reads or copies data into a buffer, it needs to check that there's
enough space before making the copy. An exception is if you
can show it can't happen -- but often programs are changed
over time that make the impossible possible.

Another problem is that C and C++ have very weak typing for
integers and don't normally detect problems manipulating
them. Since they require the programmer to do all the
detecting of problems by hand, it's easy to manipulate
numbers incorrectly in a way that's exploitable. In particular,
it's often the case that you need to keep track of a buffer
length, or read a length of something. But what happens if you
use a signed value to store this -- can an attacker cause it to
"go negative" and then later have that data interpreted as a
really large positive number? When numeric values are
translated between different sizes, can an attacker exploit this?
Are numeric overflows exploitable? Sometimes the way
integers are handled creates a vulnerability.

2. PROCESS MEMORY LAYOUT

We would discuss about how the process memory is laid out
when a process is loaded into the memory. We will go in more
details of a memory unit called “Stack” and develop our
understanding on Stack Frame by having some discussion
about assembly equivalent of C code.

Typical Memory Layout

When a program is executed, its various compilation units are
mapped in memory in a well-structured manner. The kernel
arranges pages into blocks that share certain properties, such
as access permissions. These blocks are called memory
regions, segments, or mappings. Figure below reflects typical
memory layout.

Text Segment - contains primarily the program code, i.e., a
series of executable program instructions. Other than program

code, it contains string literals, constant variables, and other
read-only data. The code execution is non-linear, it can skip
code, jump, and call functions on certain conditions.
Therefore, we have a pointer called EIP, or instruction pointer.
The address where EIP points to always contains the code that
will be executed next.

Data Segment - is an area of memory containing both
initialized and uninitialized global data. Its size is provided at
compilation time.

Stack Segment - is used to pass data (arguments) to functions
and as a space for variables of functions. It is shared by the
stack (which is a LIFO data structure) and heap that, in turn, is
allocated at run time. The stack is used to store function call-
by arguments, local variables and values of selected registers
allowing it to retrieve the program state. The heap holds
dynamic variables. To allocate memory, the heap uses the
malloc function or the new operator.

Stack Frame

Let us try to explore more about the stack area shown in Fig.
2.1, with the help of a sample program when compiled using
GNU compiler:

Compiler takes source code and emits assembly code. The
following steps are involved in compilation of the above code
into GNU assembly equivalent:

1. Identify executable and non-executable statements within
the source code.

2. Construct a local variable table and resolve all non-
executable statements.

3. Convert executable statements into assembly equivalents
as per GNU assembly template.

In step (1), when we look up the source code, we’ll find two
kinds of statements:

1) Executable - which need CPU time
2) Non-executable - which don’t need CPU time. These

statements like local variable declarations find their place
on stack. Stack is a LIFO structure.

In step (2), we create a table for non-executable statements
called local variables table or symbol table. Columns of this
table are Symbol Name, Type, Composition(memory space
needed), address. Every function has its own symbol table. For
above sample code’s main() function, symbol table appears
like:

Buffer Overflow Exploit Prevention 43

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

Extended Base Pointer (ebp) and Extended Stack Pointer
(esp), are the CPU registers that are referenced throughout the
assembly code. EBP contains virtual address, the address at
compile time. On top of EBP, resides the stack. Local
variables and arguments are addressed with respect to EBP.
Arguments stay in the high memory region and local variables
in low memory region with respect to EBP. Therefore, EBP is
also known as Stack Frame Pointer. For the sample code, first
variable is at -4 offset, second at -8 and third at -12 offset from
EBP as stack grows upwards.

In step (3), we have to convert executable code into assembly
equivalent. Template for assembly equivalent looks something
like below:

Prologue (denotes opening brace ‘{‘) and epilogue (denotes
closing brace ‘}‘) are fixed for every function.

Function call to “add” (‘call’ instruction in x86) would push
the arguments on the stack typically from right to left. Then
the Return Address from where ‘main’ will resume its
execution after ‘add’ returns, is pushed on to the stack. Then
the function prologue gets executed and the stack is allocated
for the local variables of ‘add’. When ‘add’ finishes its
execution, epilogue, which is just reverse of prologue, gets
executed and ‘ret’ instruction pops back the return address
from stack for ‘main’ to resume. So the stack frame for ‘add’
appears like:

3. BUFFER OVERFLOW EXPLOITATION,
DETECTION AND PREVENTION

3.1 Buffer Overflow Vulnerabilities

Besides unbounded methods like strcpy(), strcat(), sprintf(),
gets() and memcpy() etc., which are so called the reasons of
buffer overflows, there are other reasons as well which may

make a program vulnerable to be exploited by the attacker.
Let’s discuss some few of them here.

Unbounded Transfer

Improper Termination

Buffer Underwrite

Buffer Overflow Detection

Static analysis as well as runtime analysis of the code can
protect a programmer from introducing buffer overflow
vulnerabilities in the production environment where the
software has to be actually deployed.

Static Analysis

There are tools available like Klockwork and Coverity which
contain rules to check for secure coding violations.
CiscoProduct Security Group evaluated both the static analysis
tools against violations detailed in CERT’s secure coding
guidelines and ISO safe C technical doc and observed that
Coverity had lower false positive rates, more detailed and
intelligent messages, and was able to detect elusive bugs that
span multiple functions.

Compile and Runtime Analysis

Compilers options GCC 4.0+ and -
D_FORTIFY_SOURCE=1/2, are provided which can perform
light weight checks to detect common buffer overflows. These
options may infact warn at compile time if hey could detect
potential buffer overflow at compile time and replace copy
functions (variants of memcpy, strcpy, strat, sprintf, gest etc.)
with runtime checking versions which take the length of the
destination object. These compiler options enables a
programmer to abort the program if overflow is detected at
runtime.

Buffer Overflow Protection

Of course, it's hard to get programmers to not make common
mistakes, and it's often difficult to change programs (and
programmers!) to another language. So why not have the
underlying system automatically protect against these
problems? At the very least, protection against stack-smashing
attacks would be a good thing, because stack-smashing attacks
are especially easy to do.

In general, changing the underlying system so that it protects
against common security problems is an excellent idea, and
we'll encounter that theme in later articles too. It turns out
there are many defensive measures available, and some of the
most popular measures can be grouped into these categories:

 Canary-based defenses. This includes StackGuard (as
used by Immunix), ssp/ProPolice (as used by OpenBSD),
and Microsoft's /GS option.

Kushal Ahuja and Vinod Kumar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

44

 Non-executing stack defenses. This includes Solar
Designer's non-exec stack patch (as used by OpenWall)
and exec shield (as used by Red Hat/Fedora).

 Other approaches. This includes libsafe (as used by
Mandrake) and split-stack approaches.

4. KERNEL MODULE PROGRAMMING

One of the good features of Linux is the ability to extend at
runtime the set of features offered by the kernel. This means
that we can add functionality to the kernel (and remove
functionality as well) while the system is up and running
without needing to reboot the system. Each piece of code that
can be added to the kernel at runtime is called a module. The
Linux kernel offers support for quite a few different types(or
classes) of modules, including, but not limited to, device
drivers. Each module is made up of object code (not linked
into a complete executable) that can be dynamically linked to
the running kernel by the insmod program and can be unlinked
by the rmmod program. These are special shared objects (like
.so files) having extension ‘.ko’ where ‘k’ indicates that it is a
kernel object. Kernel modules are nothing but C files which
can be loaded and unloaded into the kernel upon demand. For
example, one type of module is the device driver, which
allows the kernel to access hardware connected to the system.
Without modules, we would have to build monolithic kernels
and add new functionality directly into the kernel image.

4.1 Writing a Kernel Module
4.2 Compiling and Building Modules
4.3 Loading and Unloading Modules

5. FUNCTIONAL SPECIFICATIONS FOR BOEP

Salient feature of the our kernel module implementation is that
it would allow buffer overflow exploit to write beyond the
bounds of a program buffer but it would prevent it from
impairing our system security.

Below is the general set of features, the module should
provide:

1. Locate the system call table, save current state of it and
overwrite it with our own function pointer at load-time.

2. Whenever a system call is invoked from user space, the
control should be passed to the module function with
which we replaced the system call table.

3. The module function should ensure that if the system call
originated from the writable region of memory, it should
be killed and if not, control should be given back to the
actual system call service routine.

4. On unloading, the system call table should be restored to
its original state.

Let’s represent what we said above, in a form of a flowchart to
help us understand the program flow:

6. HOOKING SYSTEM CALL TABLE

This module should generically detect and prevent buffer
overflow attacks on Linux by determining if a system call
originated from a writable region of memory. If so, it kills the
system call. Doing it, requires knowing the system call table
address, so that we may hook the table to point to our module
function. So, we should be able to locate sys_call_table
without the exported symbol. Till linux 2.4 kernel, there was
an exported symbol that could give the system call table
address like:

From linux 2.6 onwards, this functionality was removed for
three primary reasons:

1. It made it too easy for a programmer to accidentally trash
the entire system with a single module.

2. It made it too easy for a programmer to subvert the entire
system, including security etc. with a single module.

3. It was felt that the existing kernel functions where more
than adequate for normal module programming.

Before going any further, we need to have some basic
knowledge about the what is a system call, system call table
because kernel module implementation would require
overwriting the function pointers in system call table with our
module function.

System Call

The role of kernel is to collect the requirements from user and
to run the application by providing them kernel resources.
Kernel abstracts the application from all hardware issues like
resource management etc. This communication from user-

Buffer Overflow Exploit Prevention 45

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

space application to kernel-space is made possible through
system calls. So, system calls are kernel space functions that
serve as an interface between kernel and the applications.

A unique number identifies each system call in linux kernel.
To see it, go to kernel source directory say ~/kernel-2.6. In file
include/asm-i386/unistd.h under kernel source tree, we’ll find
a list of system calls and corresponding identifiers. The
identifiers start with 0 and run through some finite number
293 or so. An example entry for “read” system call in unistd.h
is:

The macro NR_syscalls contains the total number of system
calls for a kernel.

System Call Handler and Service Routine

As discussed above, When a User Mode process invokes a
system call, the CPU switches to Kernel Mode and starts the
execution of a kernel function. The result is a jump to an
assembly language function called the system call handler.
Because the kernel implements many different system calls,
the User Mode process must pass a parameter called the
system call number to identify the required system call; the
eax register is used by Linux for this purpose. General
execution flow while invoking a system call is:

 The system call number as seen from unistd.h, is loaded
into eax.

 All the parameters for system call are pushed into CPU
registers. But to pass the parameters in registers, two
conditions must be satisfied:
1. The length of each parameter cannot exceed the

length of a register (32 bits for 32-bit architecture).
2. The number of parameters must not exceed six,

besides the system call number passed in eax,
because 80 x 86 processors have a very limited
number of registers.

However, system calls that require more than six parameters
exist. In such cases, a single register is used to point to a
memory area in the process address space that contains the
parameter values. Of course, programmers do not have to care
about this workaround. As with every C function call,
parameters are automatically saved on the stack when the
wrapper routine is invoked. This routine will find the
appropriate way to pass the parameters to the kernel.

 Now, as the signature is ready, int 0x80 is invoked to
switch from user-space to kernel-space.

 In kernel-space, eax is read back to see the service routine
to be executed to serve the user-space system call.

The system call handler, which has a structure similar to that
of the other exception handlers, performs the following
operations:

 Saves the contents of most registers in the Kernel Mode
stack (this operation is common to all system calls and is
coded in assembly language).

 Handles the system call by invoking a corresponding C
function called the system call service routine.

 Exits from the handler: the registers are loaded with the
values saved in the Kernel Mode stack, and the CPU is
switched back from Kernel Mode to User Mode (this
operation is common to all system calls and is coded in
assembly language).

The name of the service routine associated with the xyz()
system call is usually sys_xyz(); there are, however, a few
exceptions to this rule. Figure below explains the execution
described above.

Protection System Call Handler

After hooking the system call table, core stuff left is to know,
whether the memory region from where the system call is
launched is writable or not. Because generally processor
doesn’t allow to execute from writable region of memory,
we’ll kill the system.

7. SUMMARY, CONCLUSION AND FUTURE WORK

Summary

As part of this report, we learnt about what are buffer
overflow vulnerabilities, how they are exploited, and how we
can prevent them from being exploited. We dived into the
linux kernel and learnt its inner workings. Then, we used
kernel module programming to prevent the buffer overflow
attacks from hijacking our systems.

Conclusion

Buffer overflow vulnerabilities can be minimized by following
secure coding practices but still it’s difficult to completely
eradicate them because to err is human. Moreover, it’s a
tedious job to sit and scrutinize all the existing applications for
possible buffer overflow vulnerabilities. This is where the
Buffer Overflow Exploit Prevention module becomes useful;
you can simply load it at run-time in your kernel and just
forget about your system security, which can otherwise be
impaired by an attacker.

Future Work

The future work in this direction can involve:

Kushal Ahuja and Vinod Kumar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

46

1. Implementing an ioctl interface to interact with the kernel
module from user space to pass it on a set of set of system
calls and corresponding actions like kill or ignore.

2. Expanded reporting to the user space.
3. Finding a way to deal with the “system calls” that come

from kernel.

REFERENCES

[1] Jonathan Corbet, Alessandro Rubini and Greg Kroah-Hartman.
Linux Device Drivers. Sebastopol, USA: O’REILLY, Third
Edition, 2005

[2] Robert Love, Linux Kernel Development. Indianapolis, USA:
Pearson Education, Second Edition, 2005

[3] Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel.
Sebastopol, USA: O’Reilly, Third Edition, 2005

[4] John Qian. “How to Kill Buffer Overflows – What is it”.
Product Security Workshop. <http://wwwin-
enged.cisco.com/etools/videolibrary_public/cgi-bin/>

[5] David A. Wheeler. “Countering Buffer Overflows”. Secure
Programmer.
<http://www.ibm.com/developerworks/linux/library/l-sp4.html>

[6] Common Weakness Enumeration. <http://cwe.mitre.org/>
[7] Analysis of Buffer Overflow Attacks.

<http://www.windowsecurity.com/articles/Analysis_of_Buffer_
Overflow_Attacks.html>

[8] Istvan Simon. “A Comparative Analysis of Methods of Defense
against Buffer Overflow Attacks”.
<http://www.mcs.csuhayward.edu/~simon/security/boflo.html>

[9]

