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Abstract—Buffer overflow continues to be one of the leading 
vulnerabilities that plague the software industry. Buffer overflow as 
the name suggests results because software may potentially allow 
operation, such as reading or writing, to be performed at addresses 
not intended by the developer. Buffer overflow typically affects unsafe 
languages such as C and C++ as these languages don’t perform 
bound checks on arrays and pointer references and they focus more 
on programming efficiency and code length than on the security 
aspects. Languages like Java that perform bound check are not prone 
to buffer overflows arising out of unbounded copy. Range of possible 
buffer overflow exploits is based on degree of control by attacker 
achieved. It may range from “Denial of Service” attack (resulting in 
system crash) to “Arbitrary Code Execution” (to hijack control of 
your system). 
In this report, we typically explore the kinds of programming 
vulnerabilities which result into Buffer Overflow, how an attacker 
could exploit them, how a best programmer could detect them and 
inhibit or prevent exploitation of those vulnerabilities. This report 
details one method which is based on “Execution Space Protection” 
to prevent buffer overflow vulnerability from being exploited. To 
understand this method, report is complemented with basic Process 
Memory Layout Details, Linux Internals like system calls, system call 
table, Interrupt Descriptor table (IDT), Virtual memory area, and 
Basic Kernel Module Programming. With all this knowledge 
simulated, we’ll go through design details of a Kernel Module to 
protect buffer overflow vulnerability from being exploited. This 
kernel module works by overwriting the system call table function 
pointers with its own function. Doing so would direct the control to 
the module function whenever a system call is made and we can do 
the necessary processing to know whether system call originated 
from writable region of memory. If so, we can kill the system call 
without letting it hijack control of our system. 

1. INTRODUCTION 

Buffer Overflow – The software may potentially allow 
operations, such as reading and writing at addresses not 
intended by the developer. 

 Common Weakness Enumeration (http://cwe.mitre.org) 

In computer security and programming, a buffer overflow, or 
buffer overrun, is an anomalous condition where a process 
attempts to store data beyond the boundaries of a fixed-length 
buffer. The result is that the extra data overwrites adjacent 
memory locations. The overwritten data may include other 
buffers, variables and program flow data, and may result in 
erratic program behavior, a memory access exception, 

program termination (a crash), incorrect results or ― 
especially if deliberately caused by a malicious user ― a 
possible breach of system security. A buffer overflow occurs 
when data written to a buffer, due to insufficient bounds 
checking, corrupts data values in memory addresses adjacent 
to the allocated buffer. Most commonly this occurs when 
copying strings of characters from one buffer to another. 

Example: 

Suppose, a program has defined two variables items which are 
adjacent in memory: an 8-byte-long string buffer, A, and a 2-
byte integer, B. Initially, A contains nothing but zero bytes, 
and B contains the number length of buffer A i.e. 8. 

 

Now, the program attempts to store the character string 
"excessive" in the A buffer, followed by a zero byte to mark 
the end of the string. By not checking the length of the string, 
it overwrites the value of B: 

 

In nearly all computer languages, both old and new, trying to 
overflow a buffer is normally detected and prevented 
automatically by the language itself (say, by raising an 
exception or adding more space to the buffer as needed). But 
there are two languages where this is not true: C and C++. 
Often C and C++ will simply let additional data be scribbled 
all over the rest of the memory, and this can be exploited to 
horrific effect. What's worse, it's actually more difficult to 
write correct code in C and C++ to always deal with buffer 
overflows; it's very easy to accidentally permit a buffer 
overflow. These might be irrelevant facts except that C and 
C++ are very widely used; for example, 86% of the lines of 
code in Red Hat Linux 7.1 are in either C or C++. Thus, 
there's a vast amount of code that's vulnerable to this problem 
because the implementation language fails to protect against it. 
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This isn't easily fixed in the C and C++ languages themselves. 
The problem is based on fundamental design decisions of the 
C language (particularly how pointers and arrays are handled 
in C). Since C++ is a mostly compatible superset of C, it has 
the same problems. Fundamentally, any time your program 
reads or copies data into a buffer, it needs to check that there's 
enough space before making the copy. An exception is if you 
can show it can't happen -- but often programs are changed 
over time that make the impossible possible.  

Another problem is that C and C++ have very weak typing for 
integers and don't normally detect problems manipulating 
them. Since they require the programmer to do all the 
detecting of problems by hand, it's easy to manipulate 
numbers incorrectly in a way that's exploitable. In particular, 
it's often the case that you need to keep track of a buffer 
length, or read a length of something. But what happens if you 
use a signed value to store this -- can an attacker cause it to 
"go negative" and then later have that data interpreted as a 
really large positive number? When numeric values are 
translated between different sizes, can an attacker exploit this? 
Are numeric overflows exploitable? Sometimes the way 
integers are handled creates a vulnerability.  

2. PROCESS MEMORY LAYOUT 

We would discuss about how the process memory is laid out 
when a process is loaded into the memory. We will go in more 
details of a memory unit called “Stack” and develop our 
understanding on Stack Frame by having some discussion 
about assembly equivalent of C code. 

Typical Memory Layout 

When a program is executed, its various compilation units are 
mapped in memory in a well-structured manner. The kernel 
arranges pages into blocks that share certain properties, such 
as access permissions. These blocks are called memory 
regions, segments, or mappings. Figure below reflects typical 
memory layout. 

 

Text Segment - contains primarily the program code, i.e., a 
series of executable program instructions. Other than program 

code, it contains string literals, constant variables, and other 
read-only data. The code execution is non-linear, it can skip 
code, jump, and call functions on certain conditions. 
Therefore, we have a pointer called EIP, or instruction pointer. 
The address where EIP points to always contains the code that 
will be executed next. 

Data Segment - is an area of memory containing both 
initialized and uninitialized global data. Its size is provided at 
compilation time.  

Stack Segment - is used to pass data (arguments) to functions 
and as a space for variables of functions. It is shared by the 
stack (which is a LIFO data structure) and heap that, in turn, is 
allocated at run time. The stack is used to store function call-
by arguments, local variables and values of selected registers 
allowing it to retrieve the program state. The heap holds 
dynamic variables. To allocate memory, the heap uses the 
malloc function or the new operator. 

Stack Frame 

Let us try to explore more about the stack area shown in Fig. 
2.1, with the help of a sample program when compiled using 
GNU compiler: 

 

Compiler takes source code and emits assembly code. The 
following steps are involved in compilation of the above code 
into GNU assembly equivalent: 

1. Identify executable and non-executable statements within 
the source code. 

2. Construct a local variable table and resolve all non-
executable statements. 

3. Convert executable statements into assembly equivalents 
as per GNU assembly template. 

In step (1), when we look up the source code, we’ll find two 
kinds of statements: 

1) Executable - which need CPU time 
2) Non-executable - which don’t need CPU time. These 

statements like local variable declarations find their place 
on stack. Stack is a LIFO structure. 
 

In step (2), we create a table for non-executable statements 
called local variables table or symbol table. Columns of this 
table are Symbol Name, Type, Composition(memory space 
needed), address. Every function has its own symbol table. For 
above sample code’s main() function, symbol table appears 
like: 
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Extended Base Pointer (ebp) and Extended Stack Pointer 
(esp), are the CPU registers that are referenced throughout the 
assembly code. EBP contains virtual address, the address at 
compile time. On top of EBP, resides the stack. Local 
variables and arguments are addressed with respect to EBP. 
Arguments stay in the high memory region and local variables 
in low memory region with respect to EBP. Therefore, EBP is 
also known as Stack Frame Pointer. For the sample code, first 
variable is at -4 offset, second at -8 and third at -12 offset from 
EBP as stack grows upwards. 

In step (3), we have to convert executable code into assembly 
equivalent. Template for assembly equivalent looks something 
like below: 

 
 
Prologue (denotes opening brace ‘{‘) and epilogue (denotes 
closing brace ‘}‘ ) are fixed for every function.  

 

Function call to “add” (‘call’ instruction in x86) would push 
the arguments on the stack typically from right to left. Then 
the Return Address from where ‘main’ will resume its 
execution after ‘add’ returns, is pushed on to the stack. Then 
the function prologue gets executed and the stack is allocated 
for the local variables of ‘add’. When ‘add’ finishes its 
execution, epilogue, which is just reverse of prologue, gets 
executed and ‘ret’ instruction pops back the return address 
from stack for ‘main’ to resume. So the stack frame for ‘add’ 
appears like: 

3. BUFFER OVERFLOW EXPLOITATION, 
DETECTION AND PREVENTION 

3.1 Buffer Overflow Vulnerabilities 

Besides unbounded methods like strcpy(), strcat(), sprintf(), 
gets() and memcpy() etc., which are so called the reasons of 
buffer overflows, there are other reasons as well which may 

make a program vulnerable to be exploited by the attacker. 
Let’s discuss some few of them here.  

Unbounded Transfer 

Improper Termination 

Buffer Underwrite 

Buffer Overflow Detection 

Static analysis as well as runtime analysis of the code can 
protect a programmer from introducing buffer overflow 
vulnerabilities in the production environment where the 
software has to be actually deployed. 

Static Analysis 

There are tools available like Klockwork and Coverity which 
contain rules to check for secure coding violations. 
CiscoProduct Security Group evaluated both the static analysis 
tools against violations detailed in CERT’s secure coding 
guidelines and ISO safe C technical doc and observed that 
Coverity had lower false positive rates, more detailed and 
intelligent messages, and was able to detect elusive bugs that 
span multiple functions. 

Compile and Runtime Analysis 

Compilers options GCC 4.0+ and -
D_FORTIFY_SOURCE=1/2, are provided which can perform 
light weight checks to detect common buffer overflows. These 
options may infact warn at compile time if hey could detect 
potential buffer overflow at compile time and replace copy 
functions (variants of memcpy, strcpy, strat, sprintf, gest etc.) 
with runtime checking versions which take the length of the 
destination object. These compiler options enables a 
programmer to abort the program if overflow is detected at 
runtime. 

Buffer Overflow Protection 

Of course, it's hard to get programmers to not make common 
mistakes, and it's often difficult to change programs (and 
programmers!) to another language. So why not have the 
underlying system automatically protect against these 
problems? At the very least, protection against stack-smashing 
attacks would be a good thing, because stack-smashing attacks 
are especially easy to do. 

In general, changing the underlying system so that it protects 
against common security problems is an excellent idea, and 
we'll encounter that theme in later articles too. It turns out 
there are many defensive measures available, and some of the 
most popular measures can be grouped into these categories: 

 Canary-based defenses. This includes StackGuard (as 
used by Immunix), ssp/ProPolice (as used by OpenBSD), 
and Microsoft's /GS option. 
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 Non-executing stack defenses. This includes Solar 
Designer's non-exec stack patch (as used by OpenWall) 
and exec shield (as used by Red Hat/Fedora). 

 Other approaches. This includes libsafe (as used by 
Mandrake) and split-stack approaches. 

4. KERNEL MODULE PROGRAMMING 

One of the good features of Linux is the ability to extend at 
runtime the set of features offered by the kernel. This means 
that we can add functionality to the kernel (and remove 
functionality as well) while the system is up and running 
without needing to reboot the system. Each piece of code that 
can be added to the kernel at runtime is called a module. The 
Linux kernel offers support for quite a few different types(or 
classes) of modules, including, but not limited to, device 
drivers. Each module is made up of object code (not linked 
into a complete executable) that can be dynamically linked to 
the running kernel by the insmod program and can be unlinked 
by the rmmod program. These are special shared objects (like 
.so files) having extension ‘.ko’ where ‘k’ indicates that it is a 
kernel object. Kernel modules are nothing but C files which 
can be loaded and unloaded into the kernel upon demand. For 
example, one type of module is the device driver, which 
allows the kernel to access hardware connected to the system. 
Without modules, we would have to build monolithic kernels 
and add new functionality directly into the kernel image. 

4.1 Writing a Kernel Module 
4.2 Compiling and Building Modules 
4.3 Loading and Unloading Modules 

5. FUNCTIONAL SPECIFICATIONS FOR BOEP 

Salient feature of the our kernel module implementation is that 
it would allow buffer overflow exploit to write beyond the 
bounds of a program buffer but it would prevent it from 
impairing our system security. 

Below is the general set of features, the module should 
provide: 

1. Locate the system call table, save current state of it and 
overwrite it with our own function pointer at load-time. 

2. Whenever a system call is invoked from user space, the 
control should be passed to the module function with 
which we replaced the system call table. 

3. The module function should ensure that if the system call 
originated from the writable region of memory, it should 
be killed and if not, control should be given back to the 
actual system call service routine. 

4. On unloading, the system call table should be restored to 
its original state. 

 
Let’s represent what we said above, in a form of a flowchart to 
help us understand the program flow: 

 

6. HOOKING SYSTEM CALL TABLE 

This module should generically detect and prevent buffer 
overflow attacks on Linux by determining if a system call 
originated from a writable region of memory. If so, it kills the 
system call. Doing it, requires knowing the system call table 
address, so that we may hook the table to point to our module 
function. So, we should be able to locate sys_call_table 
without the exported symbol. Till linux 2.4 kernel, there was 
an exported symbol that could give the system call table 
address like: 

From linux 2.6 onwards, this functionality was removed for 
three primary reasons: 

1. It made it too easy for a programmer to accidentally trash 
the entire system with a single module. 

2. It made it too easy for a programmer to subvert the entire 
system, including security etc. with a single module. 

3. It was felt that the existing kernel functions where more 
than adequate for normal module programming. 
 

Before going any further, we need to have some basic 
knowledge about the what is a system call, system call table 
because kernel module implementation would require 
overwriting the function pointers in system call table with our 
module function.  

System Call 

The role of kernel is to collect the requirements from user and 
to run the application by providing them kernel resources. 
Kernel abstracts the application from all hardware issues like 
resource management etc. This communication from user-



Buffer Overflow Exploit Prevention 45 
 

 

Advances in Computer Science and Information Technology (ACSIT) 
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015 

space application to kernel-space is made possible through 
system calls. So, system calls are kernel space functions that 
serve as an interface between kernel and the applications.  

A unique number identifies each system call in linux kernel. 
To see it, go to kernel source directory say ~/kernel-2.6. In file 
include/asm-i386/unistd.h under kernel source tree, we’ll find 
a list of system calls and corresponding identifiers. The 
identifiers start with 0 and run through some finite number 
293 or so. An example entry for “read” system call in unistd.h 
is: 

The macro NR_syscalls contains the total number of system 
calls for a kernel. 

System Call Handler and Service Routine 

As discussed above, When a User Mode process invokes a 
system call, the CPU switches to Kernel Mode and starts the 
execution of a kernel function. The result is a jump to an 
assembly language function called the system call handler. 
Because the kernel implements many different system calls, 
the User Mode process must pass a parameter called the 
system call number to identify the required system call; the 
eax register is used by Linux for this purpose. General 
execution flow while invoking a system call is: 

 The system call number as seen from unistd.h, is loaded 
into eax. 

 All the parameters for system call are pushed into CPU 
registers. But to pass the parameters in registers, two 
conditions must be satisfied: 
1. The length of each parameter cannot exceed the 

length of a register (32 bits for 32-bit architecture). 
2. The number of parameters must not exceed six, 

besides the system call number passed in eax, 
because 80 x 86 processors have a very limited 
number of registers. 

However, system calls that require more than six parameters 
exist. In such cases, a single register is used to point to a 
memory area in the process address space that contains the 
parameter values. Of course, programmers do not have to care 
about this workaround. As with every C function call, 
parameters are automatically saved on the stack when the 
wrapper routine is invoked. This routine will find the 
appropriate way to pass the parameters to the kernel. 

 Now, as the signature is ready, int 0x80 is invoked to 
switch from user-space to kernel-space. 

 In kernel-space, eax is read back to see the service routine 
to be executed to serve the user-space system call. 

 
The system call handler, which has a structure similar to that 
of the other exception handlers, performs the following 
operations: 

 Saves the contents of most registers in the Kernel Mode 
stack (this operation is common to all system calls and is 
coded in assembly language). 

 Handles the system call by invoking a corresponding C 
function called the system call service routine. 

 Exits from the handler: the registers are loaded with the 
values saved in the Kernel Mode stack, and the CPU is 
switched back from Kernel Mode to User Mode (this 
operation is common to all system calls and is coded in 
assembly language). 

The name of the service routine associated with the xyz( ) 
system call is usually sys_xyz(); there are, however, a few 
exceptions to this rule. Figure below explains the execution 
described above. 

 

Protection System Call Handler  

After hooking the system call table, core stuff left is to know, 
whether the memory region from where the system call is 
launched is writable or not. Because generally processor 
doesn’t allow to execute from writable region of memory, 
we’ll kill the system. 

7. SUMMARY, CONCLUSION AND FUTURE WORK 

Summary  

As part of this report, we learnt about what are buffer 
overflow vulnerabilities, how they are exploited, and how we 
can prevent them from being exploited. We dived into the 
linux kernel and learnt its inner workings. Then, we used 
kernel module programming to prevent the buffer overflow 
attacks from hijacking our systems. 

Conclusion 

Buffer overflow vulnerabilities can be minimized by following 
secure coding practices but still it’s difficult to completely 
eradicate them because to err is human. Moreover, it’s a 
tedious job to sit and scrutinize all the existing applications for 
possible buffer overflow vulnerabilities. This is where the 
Buffer Overflow Exploit Prevention module becomes useful; 
you can simply load it at run-time in your kernel and just 
forget about your system security, which can otherwise be 
impaired by an attacker. 

Future Work 

The future work in this direction can involve: 
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1. Implementing an ioctl interface to interact with the kernel 
module from user space to pass it on a set of set of system 
calls and corresponding actions like kill or ignore. 

2. Expanded reporting to the user space.  
3. Finding a way to deal with the “system calls” that come 

from kernel.  
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